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This article considers certain classical linear problems of mathematical 

physics: the boundary value problem for the elliptic equation, Cauchy’s 

problem for the equation of the hyperbolic type, and the problem on the 

construction of the integral for an equation of arbitrary type. It is 

assumed that the boundary values of the solution function and its deri- 

vatives, or the arbitrary term of the equation, are rapidly oscillating 

functions, so that the solution of the problem depends on an arbitrarily 

large parameter which determines the frequency of the oscillations, 

The solution is based on the use of the method proposed in monograph 

[ 1 I. The author presented the statement of the problem and parts of the 

results at the Third All-Union Mathematical Congress. A closely-related 

problem was treated in a note by Vishik and Liusternik [ 2 1. In this a 

different method was used, one developed by the authors in an earlier 

publication [3 1. This article [3 1 contains a detaiIed survey of public- 

ations on the asymptotic integration of partial differential equations. 

This topic is gaining interest among mathematicians in the U.S.S.R. as 

well as abroad. 

In the present article it is assumed that the number of independent 

variables is two, but the method used is also applicable to the case of 
more variables. The emphasis is here placed on the practical side of the 

problem, i.e. on rapid ways of finding the explicit solution. 

The approximate solution of all the above problems, including those 

with boundary conditions, can be reduced to the repeated solution of 

Cauchy’s problem (in a complex region) for first-order equations. In this 

connection it was found convenient to make no distinction between the 

boundary and the initial conditions, which are described in this article 

922 
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by the unifying term “contour conditions”. 

1. 1. Let the following linear differential equation of order 2 be 

given 

(1.1) 

where (a, 6) are independent variables, @ is the function to be determined 

and aj$“) are real functions of a and p. 

It is assumed that the functions are sufficiently smooth to guarantee 

that the characteristics L (real or imaginary) will be unique, and that, 

within the considered region plus its boundary, the equation (1.1) has 

no singular points, i.e. points at which all the coefficients ajk ( I) 

are simultaneously zero. 

2. We will seek a solution of equation (1.1) in the form 

where k is a real constant, and f and Ou are functions of a and 1-3. We 

will call the function f the change function, and at the intensity function. 

The terms au(u = 1, . . . . R- 1) will be called the coefficients of the 

expansion of the intensity function, mR will stand for the remainder. We 

impose the following additional requirement: the change function and the 

coefficients of the expansion of the intensity function are independent 

of k. 

3 . Let D( ‘a *) be the symbol indicating the s-th partial derivative 

with respect to a, and the t-th partial derivative with respect to (3. 

p’lhen 

(fa, fp are the partial 
ively). 

derivatives of f with respect to a ar,J p respect- 

The symbolic product standing on the right-hand side of the last equa- 

tion can be expanded in descending powers of k. We thus obtain 

(1.4) 

where Du( *B ‘1 is some differential operator of order u. In particular 
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With the aid of equations (1.4) and (1.1) one can write 

where 

(1.3) 

(1.6) 

(1.7) 

and Ly is a linear differential operator of order y whose coefficients 
are polynomials in the derivatives of f, and are linear functions of 

V cjk( ) . 

4. Substituting the expression (1.2) into (1.61, and expanding the 

result in descending powers of k, we obtain 

L' - 1 lL=R 

L (Cu, E 8 {k’ 2 k-U 2 k-“I,, (CD,,)) = 0 (1.9) 
?> =,, u-o 

Dropping the exponential factor and carrying out some obvious trans- 

formations we obtain*: 

k’ 2 2 K’L,_,(@,) = 0 
t-o u=o 

l Here and in the sequel the indicated sums contain only those terms 
whose summation indices satisfy the auxiliary inequalities indicated 

in the parentheses. 
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Let us require that all the coefficients of the powers of k from I to 

Z-R be zero in the left-hand side of this last equation. This equation 

then reduces to the system 

Cr--u<Z; u<K; r==O,I,...,R) (1.10) 

r=R+Z u=r 

x 2 iPL,_,(aq =o 

r=R+l u=O 

(‘--u&k u&R) (1.11) 

5. It is easy to prove that the relations (1.10) lead to a recurrence 

system of equations for the determination of the change function and of 

the coefficients of the expansion of the intensity function. 

Putting r = 0 in (1.10) and taking into account equation (1.71, we 

obtain for the determination of the change function the following first- 

order differential equation of degree 1: 

(1.12) 
j=O 

Making use of (1.12) we can transform (1.10) to the form 
u=r--2 

L, (BQ=O, I,, (m,._)=- 2 I+_, (<I>~) (r--uQ; 6R r=Z . . *RI (1.13) 
u=o 

By means of these equations it is possible to determine all the coeffi- 

cients of the expansion of the change function. 

6. To determine the remainder term,we have the equation (1.11). Divid- 

ing out the factor keR-l in this equation and changing the sumnation 

index by means of the formula r - R = p + 1, we can rewrite equation 

(1.11) as 

p-z-1 p=~-~ u=R-I 

7. We have found a recurrence process for the successive determination 

of the function f, @co, QI, . . . , @R_1, OR. Here each successive function 

can be obtained from the known preceding functions by solving one diffe- 

rential equation. To determine the change function, we have a first-order 

differential equation of degree 1: for the determination of each of the 

coefficients of the expansion of the intensity function, we have a first- 
order linear differential equation. The remainder term satisfies a linear 

differential equation of order 1 (with the same principal part as the 

original equation). 
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R. The equation (1.121, which determines the change function, is the 

differential equation of the characteristics of the operator L. Therefore, 

the solutions of equation (1.12) will be such functions, and only such, 

as are constant on an arbitrary curve of some family of characteristics 

of L. Hence, every integral of type (1.2) can be put in correspondence 

with some family of characteristics of L, namely, with a family on whose 

curves the change function preserves its constant value. Integrals which 

correspond to different families of characteristics of L, will be said to 

be essentially different integrals. In the case considered (when the 

characteristics are unique) there exist essentially different families of 

integrals, each of which corresponds to its own family of characteristics. 

'Ihe problem of solving the nonlinear equation (1.12) is easily reduced 

to the problem of integrating first-order linear equations. Indeed, in 

equation (1.12), L, represents a homogeneous polynomial of degree I in 

f= and f/+ Therefore, this expression can be represented as a product of 

1 real or complex factors 

and hence, each solution of equation (1.12) must satisfy at least one of 

the equations 

ArlfG t- Aj;, = 0 (7 = 1, . . . , 1) (1.15) 

Arbitrarily selecting one of equations (1.15) for the construction of 

f, we thereby also select that family of characteristics to which the 

solution integral corresponds. 

9. We shall consider the question regarding the singular points of 

equations (1.12), (1.13) and (1.14). 'Ihe equation (1.12) has Go singular 

points, for the CZ!') 
1.1-i 

are, by hypothesis, sufficiently smooth and cannot 

vanish simultaneously. 

In the sequel it will always be assumed that the solutions of equations 

(1.12) and (1.13) are sufficiently smooth within the regions that interest 

us. Therefore, there can occur singular points in equations (1.13) and 

(1.14) only when the coefficients of the highest derivatives of the solu- 

tion function vanish simultaneously. For equation (1.14) this cannot 

happen, for if it did, then, contrary to hypothesis, equation (1.1) would 

also have singular points. In equations (1.131, the coefficients of the 

highest derivatives can vanish simultaneously only when the following 

equations are satisfied simultaneously with (1.12): 

{i’d = 0, “-- IL,,} = 0 
a d i I 

,* 

These equations can hold only under the following conditions:(a) at 
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stationary points of.the function R, where fa = f 
P 

= 0 (if 1 > l);(b) at 
points where the characteristics of the family (corresponding to the given 

integral) are tangent to curves of some other family of characteristics. 

2. In this and the following sections we will show by concrete examples 

that the method described in the preceding section makes it possible to 

construct integrals sufficiently general to yield solutions of some 

classical problems in the theory of differential equations. 

1. We will consider a simply connected region r = r+ y bounded by the 

contour y. Let the parameters (a, fi) be the coordinates of a system 

similar to that of polar coordinates, i.e. the contour y is given by the 

equation a = a,, > 0, the region r is determined by the inequalities 

04 a< QO' and 0 < p < 2n,while the correspondence between the points 

of the region and the pairs (a, p) is a reciprocal one-to-one correspond- 

ence except for the point a = 0 and the lines /3 = 0, /3 = 2~. 

2. We will assume that the operator L is elliptic everywhere in r 

(hence, I is even). We set ourselves the following problem A. It is re- 

quired to construct within r a solution of equation (1.11 satisfying the 

following boundary conditions on y: 

(p = 0, 1, 2, . . . , '/* l- 1) (2.1) 

where g(p) and Q are given functions of /3 which do not depend on 4, 

‘Ihe parameters of the problem are assumed to be sufficiently smooth, 

i.e. y has a smoothness of high enough order, while g (to and e'@ are 

sufficiently smooth not only as functions of /3, but also as functions of 

a point on the contour y. 

lhe function C$ will be considered to be a real, monotonic increasing 

(decreasing) function of 8. 'lhe func 

positive (negative); the functions g CL) 4 
ion $'@) will therefore always be 

may be complex-valued. 

If &P) = const, 4 = /3, and k is an integer, then the problem A reduces 

to the classical problem of the theory of elliptic differential equations, 

when the boundary functions are expanded into complex Fourier series and 

when in each there is retained only one term of sufficiently high order 

of k. 

3. 'Ihe solution of problem A will be constructed as the sum of inte- 
grals of type (1.21, which correspond to certain families of eharacter- 

istics of the 0perator.L. 

Ejy f(Q), au(q), let us denote the component integrals which correspond 
to the q-th family of the characterics of the operator L and let us ask 
whether it is possible to subject f(q) to the condition 



A.L. Go1 ‘dcnveizer 

Re {fa”‘) > 0 on *f (2.2) 

Obviously, the first of the conditions (2.2) can be fulfilled for any 

family of characteristics by solving Cauchy’s problem for the correspond- 
ing equation (1.15). It remains for us ,to consider the second conditions 
in (2.2). Because of the ellipticity of L, all families of its character- 

isis~;st~r~v~m~;yu, and hence, all f( 9) n ~ompl”f functions. Further- 
there corresponds an f t - 2 f ’ (the bar above a 

quantity indicates the complex conjugate). 

From condition (2.2) it follows that yfp(q) = iq5’@), that is, f (PI 
takes on purely imaginary values at every point of the contour y. &!! t, 

for the elliptic operator L, 

(1.15) are complex, 
the coefficients (Al,., Azr ) in equations 

(q) 
and none of these equations can be satisfied if f,(Q) 

and fp are purely imaginary. Hence, the real part of f,(Q) must be 

different from zero at each point of y. Thus, if f(Q) is subjected to the 
first condition of (2.21, then the sign of the real part of fa( 9) 
is uniquely determined. Moreover, it is easy to verify that if f ( Sj)n& 
f( t) md f-t t) = + f-t S) are subjected to the same condition (2.2), then 
the signs of the real parts of fa( s, and fat t, will differ on y. From 

this it follows that there exist exactly l/2 families of characteristics 

of the operator L for which both the (2.2) conditions can be satisfied. 

4. let us enumerate the families of the characteristics of L in such 
a way that in the first places there occur the families for which both 

(2.2) conditions are satisfied. We are seeking a solution of the problem 

A in the form 

q=‘Is 2 u=R 
@ = 2 (@f(P) 2 /pQp) 

q=1 u=o 

assuming that all f( 9) satisfy the conditions (2.2). Interchanging 

D(p*‘) for L in (1.9), we obtain 

(p = 0, 1, 2, . . . , l/f* l- 1) 

Substituting this result into (2.1), and taking into consideration that 

the f(q) satisfy conditions (2.2), we find that 
Q=‘lo 1 lJ=ll tl=R 

qz k’” 2 k-’ 2 k-“D,, 9($, ‘) (,Lq!) = +$4 on y (2.3) 
o=o u=o 

(i* = 0, 1, 2, . . . ( ‘/z I - 1) 
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Let us in this expression require the coefficients of corresponding 

powers (from p to p - R + 1) of k on the left- and right-hand sides of the 

equations to be equal. After some transformations, this yields 

(2.4) 
q=1 

q=‘lt 1 Q=‘l* I u=r--1 

2 DE*:’ (a)?)) = - 2 2 D$?~~q (@iq)) 
q=1 q=1 u=o 

( p-uGw ) any (2.5) 
?=I,..., R-1 

Q='lzl p=!J q=‘lr t P=IL--~ u=R--1 

2 2 Ic-~D~;~’ (G$‘)= - 2 2 2 k-PD&_;)_u, q (@u(q)) on y 
'q=1 p=o q=1 . P==O u=o 

5. The expression Dip;‘) 
, 

can be given with the help of equation (1.5) 

as 

DEhO’ = (f/y 

From this it follows that (2.4) represents a system of l/2 linear 

algebraic equations in the Qo( q) (q = 1, 2, . . . , 12). 

If the functions Qo( q) , Ql(q), . . . , Q!‘jli are known, and one can 

therefore construct the contour values of these functions and the required 

number of their derivatives, then the right-hand sides of (2.5) are known 

functions and these relations constitute a system of linear algebraic 

equatiolis in the contour values cPr (q) (q = 1, . ..) z/2). 

All the systems mentioned have the same determinant: 

A =I\ (fcL(q))‘/! (q = 1, 2, . ( ‘/z 1, I* = 0, 1, . . . , I(‘? I - 1) 

This is the Vandennond determinant, which can be equal to zero only on 

condition that at least two functions fa with two different superscripts 

are equal to each other. 

This can occur only at those points on y where two characteristics of 

L, which belong to different families, are tangent to each other*, for all 

the f@(q) equal to each other on y and for arbitrary (3. This is a 

* Here and in the sequel it will be assumed that the real or imaginary 
curves $ = const and $I= const are tangents to each other at every 

point where (q!~s,, $) are proportional to ($s, $p). 
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consequence of the conditions (2.2). 

We will exclude from consideration the case when y contains such points 

(they are also singular points of the equations which determine the 

coefficients of the expansion of the intensity function). lhe contour 

conditions (2.4) and (2.5) can now be changed to the form: 

Q fq) -=1 $j (G) 
s s (s=O, f,...,H--l) on-f (2.7) 

w&e the &S('J) are known as soon as the functions QO 

*!I are determined in a neighborhood of y. 

(q), q(q), . . . . 

lbe relation (2.6) gives the boundary conditions for the remainder 

terms QRiq). Here we have t/2 boundary conditions imposed upon l/2 

functions aRtq). Each of the (bR(g) f unctions satisfies an equation of 

order I, and the problem of constructing the remainder terms remains in- 

determinate (as a Cauchy problem). We will return to this problem later. 

6. It has thus been shown that it is possible to construct a solution 

of problem A in the neig~orhood of y; in particular, this solution 

satisfies the second of the (2.2) conditions. Henceforth we will refer 

to this condition as the condition of damping. We have found contour con- 

ditions which must be taken into consideration when constructing the 

change function and the coefficients of the expansion of the intensity 

function. Moreover, we have found that the construction of each of the 

functions enumerated can be reduced to the solution of Cauchy's problem 

for a first-order linear equation. Finally, we have derived contour con- 

ditions (insufficient in number) to determine the remainder terms. 

3. We will next show that under certain known conditions, the solution 

of problem A (constructed in the preceding section in a neighborhood of 

y) can be extended over the entire region f', and that the problem on the 

construction of the remainder term can be supplemented to the extent that 

@J(I) remains bounded for arbitrarily large k. 

1. We introduce into consideration a region l' E contained between y 

(the line a = a,> amI y,: (the line a = a0 - t 1, where 6 is a positive, 

sufficiently small number. Moreover, we assume that fa) equation (1.13) 

with contour conditions (2.7) has (in I',) sufficiently smooth solutions 

@(), @I, 1.“ @R-i; (b) equations (1.14) with contour conditions (2.6) can 

be made determinate by the addition of a certain number of auxiliary con- 

ditions under which these equations (1.14) will (in l") have sufficiently 

smooth solutions; (cl equation 

with homogeneous contour conditions of type (2.1), in the entire region 

r has a sufficiently smooth solution for an arbitrary sufficiently smooth 
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function T. 

Conditions under which statements (a> and (c) are true have been 

treated in the literature, and we will not dwell on them. We will, how- 

ever, return to a consideration of the question of under what conditions 

statement (b) may hold. 

2. In consequence of (2.21, the real part of & will be non-positive* 

in T for sufficiently smali c l Owing to assarptions fa) and (61, the 

fun&ions @ (9) (u = 0, 1, . . . . R) are bounded. Therefore, on an arbitrary 

contoury f 6 <q<c), the absolute value of the function 

U-R 
Q(4) == &Q) p k--‘ @)Itf@ 

L-i 
(3.2) 

T&=0 

will be of order O(/Z-~), where u is an arbitrary positive number. A 

sufficient number of derivatives of il, ( 9) will have the same property. 

As in an earlier article C3 3, we introduce a .smoothing function $, 
which has the value one in the region Pq and value zero in I?- r,, and has 

derivatives of aff orders at every point of r, and we consider the func- 

tion 

@ (p) = &$-J,(Q) + @t" 
l 

(3.31 

where d)(q) is one of the f/2 solutions of (1.1) constructed in the 

neighborhood of y by the method of the preceding section, while (PO is a 

function which, everywhere in T', satisfied the equation 

L (W) = - .L (IjCP~) 

This implies that O(q) is a solution of (1.1). 

ckr. the right-hand side of the equation last displayed there is a 

in f- FE, for ti/ = 1 in fn and 

zn the neighborhood of yI while in 

r - $, the function $= 0. In r, - r,, the fiction rfr an7 a sufficient 

number of its derivatives are bo~d~c~, and the function @ q is of type 

Ofk'"). Thus we have sn equation of form (3.1), which, in consequence of 

hypothesis (~1, has a solution of the type Q(Iz*')~ 'j'his means that with 

the aid of formula (3.31, each of the functions 9tr 9 , which in Section 2 

were constructed for neighborhoods of y only, has now been extended over 

the region I?. Furthermore, all boundary conditians on y are preserved, 

and the extended function @ (9) satisfies the equation (1.1). 

3. We mw return to the problem of making the construction of the 

* This follows from 8 theorem on ~~iferm continuity. 
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remainder term determinate. ‘lhe equation (1.141, which has to 

fied by the function $,, is of order 2 with a small parameter 

appears as a coefficient of the highest-order derivatives. In _ _ 

be satis- 
k-l, which 

the paper 

by Vishik and Liusternik cited above 13 I , an equation of this type was 

considered from a general viewpoint. In this paper the authors introduce 

the concepts of the “limiting” (d egeneratel problem and of the regularity 

of the degeneration. I+ the limiting problem is meant the problem of 

solving the degenerated equation which results if k-l = 0 and when one 

has the appropriate nunber of contour conditions (only a part of the 

contour conditions originally given will remain, if the limiting problem 

is correctly formulated). The degeneration of the original problem to the 

limiting problem is said to be a regular degeneration if the solution of 

the limiting problem uniformly converges, as k + m, to the solution of 

the original problem at every point that is not on y. In the neighbor- 

hood of y there takes place a rapid convergence to zero of the absolute 

value of the additional terms, which permit a compensation for the mis- 

match in the contour conditions; (in the previous paper [ 3 1 these 

additional terms were called boundary layer terms, while in monograph 

[ 1 I they were referred to as integrals with a given support contour). 

Vishik and Liusternik derived the condition for the degeneration to 

be regular. It consists of the requirement that the so-called auxiliary 

characteristic equation shall have as many roots with positive real parts 

(when motion into the region corresponds to a decrease in a) as the 

number of boundary conditions that had to be dropped in the passage from 

the original problem to the limiting problem. 

It is not difficult to discover, by following the arguments presented 

in reference [3 I , that if the conditions for the regularity of degenera- 

tion are not satisfied, then the additional terms described above can 

still be constructed, but they will no longer decrease (with an increase 

in k) as one passes from the boundary to the interior of the region. If, 

however, the solutions of the limiting problem satisfy all boundary con- 

ditions of the original problem, then the additional terms will not 

appear. 

4. let us next verify whether the condition for the regularity of the 

degeneration is satisfied in the case that interests us. If the boundary 

conditions are given for the boundary a = an, then the auxiliary charac- 

teristic equation for the operator 

p--I-1 

2: k-P &+I 

which appears on the left-hand side of the equation 
in the following way: from each of the differential 

(3.4) 

(1.14), is constructed 
operators L . 

p+1 lS 



taken only the term that cantains the derivative with respect to ct of 
order p + 1, and this derivative is replaced by A, where X is an unknown 

(all functions are hereby replaced by their contour values). (he can 

show that these operations yield the following equation 

(3.5) 

all of whose roots are given by tfte formula 

From this and from conditions (2.2) it follows that the auxiliary 

characteristic equation has no root with a positive reel part. lhis means 

that none of the boundary conditions which might make the problem on the 

construction of the remainder term QR determinate can be given arbitrarily. 

These boundary conditions must be so designed as to be satisfied by the 

solution of the limiting problem. 

5. We will next make 8 more detailed study of the Cauchy problem to 

Which the determination of the remainder terms in T catr ho rekced. Be 

have Z/2 equations of fozm f1B241 f ff 1 or each of thei"BR Q and f[2 boundary 

conditions of form f2.61, We construct the fimiting (degenerate) equation 

for equation (I.141 

and attach thereto the boundary conditions 

(3.7) 

where YQl d are some still undetermined functions on the contour yS 

I&t us suppose that the limiting Cauchy problem f$.BI and f3.71 has 

heen solved. Then one can find YI(ol, y’z(q), . . . . Y/Ipi, yuitich are the 

contour values of the derivatives of QR with respect to a, of the respect- 

ive order. All of these cil~l be expressed in terms of the Yb(q) and their 
derivatives with respect to 0. Substituting these results into boundary 

conditions (2.6), we obtain, for the YO(q), a system of l/2 ordinary 

differential equations (with /3 as the independent variable). 

Without taking time to investigate this system, we suppose it to 

possess sufficiently smr>ath periodic solutions. lhen the problem of the 

Q&91 f unc xons till be properly defined (as a Cauchy problem) in the t‘ 

folfoting way: for each of the eqW&ions of type (1.14) there are given 

contour values of the function rDR(q) and of its t - f derivatives; the 
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solution of the limiting problem will satisfy all these contour condi- 

tions, while contour conditions (2.6) are satisfied automatically. 

For the problem on the construction of the remainder terms QR(q), 

which has thus been made determinate, hypothesis (b) will be satisfied. 

6. Thus, within the framework of the above hypotheses, the solution 

of problem A will decrease rapidly, for large enough k, as one moves from 

the contour to the interior of the region; this solution can be approxi- 

mately constructed (by neglecting the remainder terms) to any degree of 

accuracy by the successive solution of Cauchy’s problem for first-order 

linear differential equations. 

4. We will consider another classical problem of mathematical physics. 

1. Let L be a completely hyperbolic operator of order 1, which possesses 

2 different families of real characteristics. The problem B, which we 

will consider, consists of the construction of a solution of equation 

(1.1) which on some contour y, not tangent to any one of the character- 

istics of L, satisfies the conditions 

where D(pPo) is a symbol that stands for the FL-th order derivative in the 

normal direction to y; g(p) and q5 d o not depend on k and are sufficiently 

smooth functions defined on y. 
g(P) 

Moreover, q5 is a real function, while the 

are complex. Such boundary conditions will be met, for example, when 

we try to solve the classical Cauchy problem by expanding the boundary 

functions into complex Fourier series, and then concentrate our attention 

on a single term of high enough order. 

For the sake of simplicity, let us suppose that the contour y coincides 

with the line a = aO, which, obviously, does not restrict the generality 

of the results. Then D(pl”) becomes a symbol for the I-th derivative with 

respect to a, as it was in Section 1. * 

2. ‘lhe solution of problem B may be sought as a sum of integrals of 

form (1.2) corresponding to all the families of characteristics of the 

l When this article was already in the press, it became known to the 
author that in the work of Lax [ 4 I problem B is considered in much 

greater detail than here. Lax solves problem B for first-order hyper- 

bolic systems of equations in an arbitrary number of independent 

variables. He uses a very similar method to that used here and in mono- 

graph [ 1 1. 
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operator L : 

@ = 5’ (e”i(@ a; k-” (J,,‘@) 

(14 u-0 

We impose the following boundary conditions on all change functions 

fM - iq2@) on y f4.2) 

For a completely hyperbolic operator in equation (1.15), the coeffi- 

cients (A,,, A,,) are proportional to a air of real functions, Therefore, 
791 in consequence of (4.21, the functions f will be pure imaginary. The 

contour conditions (4.1) can be represented, with the aid of (4.21, in 

the form 

q=l 
2 k”” ‘5 k--u ‘yk-U@$ ((I),(q)) == j,Q”” on r 

(4.3) 

q-1 v4l u-0 

which is entirely analogous to the relation (2.3). 'Ihe remaining argu- 

ments can be carried out along the same line as that used in section 2. 

Making the requirement that in the relation (4.3) the coefficients of 

corresponding powers of k, from p ta p - R - 1, shall be equal on the 

right and left sides of the equations, we obtain (for p = 0, 1, . . . . 
I- 1) 

The first two of these relations make it possible to reduce the de- 

termination of the coefficients of the expansion of the intensity function 

to the successive solution of Cauchy's problem for first-order linear 

differential equations. Here, as in Section 2, it is necessary to require 

that the Vandertnond determinant shall 

be different from zero, that is, that on the curve y there shall be no 

point at which two characteristics belonging to different families are 
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tangent to each other. 

This, on the basis of (4.4)‘ establishes 1 contour conditions fox the 
remainder terms @R( (I). ( ) Next, it is necessary to make the problem on the 
construction of the QR q determinate. For this purpose one can, for 
exmnple, impose the requirement that this problem shall have a regular 
degeneration. ‘Ihe auxiliary characteristic equation for problem B is 
given by (3.2). All its roots are pure imaginary. This follows fran equa- 
tion (4.2). Therefore, the problem on the construction of aR can be made 
determinate in the same way as in Section 3. 

5.Ihe application of the proposed raethod to the construct- 
ion of a particular integral, 

1. Suppose we are given the equation 

I. (CD) = Y (a, p) f~+f(~* fi) (51) 

where f is a pure imaginary and sufficiently smooth function which has 
no singular points in the region that interests us; Y (a, 6) is a suffic- 
iently smooth complex function; k is a sufficiently large real constant. 
Let us consider the problem of finding a particular integral of 15.1) in 
the form 

where the number 
and the function 

U=.R 

CD = AP ,W la> 8) (5.2) 

p, the functions @ , Q, 
QR (depending on k ‘I ..* 

arhl tb.bk 2gidt;zw-+=t of k) 

2. ‘lhe substitution of (5.2) into (5.1), and the division by an ex- 
ponential factor, result in the following equation 

kl+P uil p ugp L, (@,> ;I y 
(523) 

t‘=O u=rJ 

Let us suppose that the expression 

is different from zero at every point of the region under consideration; 
that is, the level lines of the function f are not tangent to the 
characteristics of L. Che can then set p = - E and require the coefficient 
of the corresponding powers of k (from 0 to - R -t 1) to be equal on the 
two sides of equation (5.3). We then obtain recurrence formulas to de- 
termine the coefficients of the expansion of the intensity function, 
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p=r 

@o.=&Qr=-& zLp(*r_p) (p<l; 0 
r = 1, . . . , R - 1) (5.4) 

p=1 

and the I-th order linear differential equation to determine the re- 
mainder tens 

p=I p-l u=R-1 

2 ‘=%(%)=-~ 2 k-PLR+p-u(Q)u) (R+p-u&l) (5.5) 
p=o p=o u=o 

3. Next, let us suppose that in the entire region under consideration 
the function f satisfies the equation 

that is, the level lines of the function f everywhere coincide with the 

characteristics of L. lhen equation (5.1) will take on the form 

let us put p = - 1 + 1, and again require the coefficients of corres- 

ponding powers of k (from 0 to - R + 1) to be equal on the two sides of 

the equation (5.61. We obtain the following system of recurrence equations 
to determine the coefficients of the expansion of the intensity function 

p=r 

Ll (Q)“) = Y, Ll PT) = - 2 L, (@r-p) (p<Z; r=l, . . . ,R--I) (5.7) 

To determine the remainder term, we obtain the linear differential 
equation of order 1 

5’ k-%, (@R) = - ;’ U=R-l h PLR+p_,, ((T, ) 

p=1 p=o 2 .-- 
21 (If +- p - u< I) (5.8) 

lhe singular points of the differential equation (5.7) were invest- 

igated in Section 1. lhese points can occur only at points of tangency 
of characteristics belonging to different families (the case when f has 

stationary points is excluded from consideration). 

4. let us postulate that equations (5.5) and (5.g) have sufficiently 
smooth particular solutions for arbitrary and sufficiently smooth right- 
hand terms. One can then assert that the particular integral of equation 

(5.1) can be constructed, with an arbitrary degree of accuracy, for an 
arbitrarily large k by the method proposed. If the level lines of the 
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change function of the right-hand side of equation (5.1) do not touch the 

characteristics of the operator L (as, in particular, is always the case 

when L is an elliptic operator), then the construction of a particular 

integral can be completed without solving any differential equations. 
Moreover, if in this case the right-hand side of equation (5.1) is bounded, 

then the particular integral will be of type O(k”). If the level lines 

of the change function of the right-hand side of equation (5.1) everywhere 

coincide with the characteristics of L, then the approximate particular 

integral is constructed by the successive solutions of first-order linear 
differential equations; hence, if the right-hand side of equation (5.1) 

is bounded, then the particular integral is of type O(k”+‘). Thus, the 
case when the level lines of the function f coincide with the character- 

istics of L, is in a certain sense a case of resonance. 

5. Let us suppose that the functions appearing in the right-hand side 

of (5.1) have the form 

/(c(, p) m-z i (VEX + ll?), ‘I’(&, j) m- const (111, n == coIrst) 

We then obtain an expression which is a high-order term of the complex 

Fourier series. Iherefore, the question of how the particular integrals 
decrease with an increase of k is of interest in the investigation of the 

convergence of the solutions obtained by the established method of expand- 

ing the right-hand members of the differential equations into series. 

6. We note that if the level lines of the function f do not coincide 
with the characteristics of L, that is, if the recurrence formulas are 

valid, then the approximate particular integral will be zero in every 

region where Y = 0. ‘Ihis means that if the function on the right-hand 
side of (5.1) is different from zero only in sane subregion, and if in 

this subregion this function oscillates fast enough, and if the level 

lines of the change function do not coincide with the characteristics of 

the operator L, then one can construct such a particular integral of 

equation (5.1) as will be essentially different from zero only in the 

given subregion (it is of course assumed that the usual conditions of 

smoothness are satisfied by the parameters of the problem i.e. the func- 
tion Y changes smoothly from its non-zero values to the value zero>. 

6. Example. We are given the following equation in polar coordinates 

8% 
.-_ 

&.? + 

where (1 is a function on 
posed. It is required to 

in the circle r < 1. and 

which for the time being no conditions are im- 
construct a solution of this equation lying with- 

satisfying the boundary conditions 

CIl = g,,po for 7 = 1 
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(gc is a complex constant, k is a sufficiently large integer). In the 

case under consideration, 

The equation to determine f has the form 

It is equivalent to two first-order linear differential equations 

dj ‘~~_ -’ $ L 0 

The following conditions must be imposed on the change 

f = ig,, for r=i 

(6.2) 

function f 

(6.3) 

The second of these conditions (the condition of damping) can be 

satisfied only by the solution of the first equation in (6.2). Hence. one 

can discard the second equation in (6.2). From equations (6.2) and (6.3) 

we obtain 

f = lnr + il) 

With the aid of this equation, the operators L1 and Lg can be trans- 

formed to 

or 

L1 = __$_ a_. p = In P + i6 
rA op ’ 

L=L d2 9 ----+a r2 apap i J , p= 11~ r - i0 

We express the integral solution in the form 

CT, = 8 (Q, + k-l OX + k-2 m2) 

that is, we assume that the intensity function can be approximated by 

two terms of the expansion. The equations to determine @o, ai, @2 w’ill be 

I,1 (@“) :mm 0, Ll (@I) = - L2 (ql), k-‘I,2 (a)z) + At1 ((DY) = - L2 (4,1) (6.4) 

while the contour conditions for aO, ml, and m2 are written as follows: 
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@o = go* 0’1 = 0, ah=0 at r-1 (6.5) 

The coefficients in the expansion of the change function are determined 

without difficulty by means of (6.4) and (6.5): 

Qo = go, 
P 

(31 = s “;’ go+ 

-iO 

(a and r are considered as functions of p and p). 

To determine the remainder term we have the equations 

where 

1 

f -; 

a 0 __ 

&= go .- L rJ &I (ar2) + a i 
a$ 

--- 4 dP 1 
-iCl 

(6.7) 

and the boundary condiMons 
o,z=o at r=i 03.5) 

The approximate solution (in which the remainder term is neglected1 of 

the given problem can thus be written in the form 

If ar* is bounded as r goes to zero. then the solution is significant 
over the entire circle r < 1, for in this case it is not necessary to 

introduce a smoothing function. 

The example considered belongs to the general class of problems treated 

by Vishik and Liusternik [ 2 I, and it can be solved by the method they 

proposed. By this method the form of the solution is the same as that ob- 

tained here, but Vishik and Liusternik replaced the coefficients of the 

equations in the first approximation by their contour values (since they 

were concerned with the construction of solutions nlocalized” near the 

contour y ) . In this way the type of the change function is determined. 

In the work of Vishik and Liusternik. this function is always a linear 

function of the coordinate which determines the distance from the contour 

(in the case considered, it is a linear function of r). By the method 

proposed here, the change function is determined exactly at the first 

stage of the solution (in the case under consideration it is a logarithmic 

function of r), and in many cases this makes it possible to decrease the 

number of approximations required for obtaining a certain degree of 

accuracy (for a fixed k). In this connection it must be mentioned that 
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each stage of the solution taken separately can be carried out more simply by 
the method of Vlshik and Liustemik than by that proposed here. 

7. The results obtained above admit of various generalizations. 

They can of course be extended to the case of more than two independent vari- 
ables. However. the method (described at the end of Section 1) for reducing the 

nonlinear equation determining j to 1 linear equations ceases to be applicable 

under this generalization. 

The extension to the case of multiple characteristics is more difficult. In 

this case an integral (solution) of the form @= ekf(t: must be sought: 

A-<--x-l z‘- n 

f = f. + 2 k++“)‘F f(x_+i~), :, a,* = 2‘ L1 k-u q, 
).=O U=.S+Tl<-O 

where K, c are integers (not necessarily relatively prime to each other) and 

K< c the summation in the formula for @ is carried out over all u which are 

of the form u + r/c (u. r are non-negativg integers); the functions 

do not depend on the parameter k. 

The number K/C can be so chosen as to obtain a recurrence process for the 

determination of the functions in (7.1). By this process the principal part of 

the change function will be determined the same way es the function j was de- 

termined earlier. The determination of the remaining terms of the sequence (7.1) 

can be reduced, in general, to the solution of first-order equations; however, 

cases can occur when it becomes necessary to solve equations of higher order in 

this connection. 

If the multiplicity of some family of characteristics is p, then to this 

family there will correspond integrals (solutions) in which the principal part 

of the change function j, retains constant values on the curves of this family. 

In such a case, generally speaking, there will exist p processes to determine 

the remaining terms of the expansion of the change function. These processes will 

be distinguishable from each other either by the value of the number K. or by 
the type of the differential equation from which the ratio jK,~ is to be deter- 

mined. Here also one csn have exceptions. For a p-multiple characteristic In 

certain cases there may exist only p - n of the processes described. In these 

cases, and these only, we will have the exceptions already mentioned, when it is 

necessary to solve equations of order higher than the first (namely of order R) 

to determine the coefficients of the expansion of the intensity function. 
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